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ABSTRACT
Internet traffic is increasingly becoming multimedia-centric.
Its growth is driven by the fast-growing mobile user base that
is more interested in the content rather than its origin. These
trends have motivated proposals for a new Internet network-
ing paradigm–information-centric networking (ICN). This
paradigm requires unique names for packets to leverage per-
vasive in-network caching, name-based routing, and named-
data provenance. However named-data routing makes user
censorship easy. Hence an anti-censorship mechanism is im-
perative to help users mask their named queries to prevent
censorship and identification. However, this masking mech-
anism should not adversely affect request rates.

In this paper, we propose such an anti-censorship frame-
work, which is lightweight and specifically targets low com-
pute power mobile devices. We analyze our framework’s
information-theoretic secrecy and present perfect secrecy
thresholds under different scenarios. We also analyze its
breakability and computational security. Experimental re-
sults prove the framework’s effectiveness: for requests it adds
between 1.3–1.8 times in latency overhead over baseline ICN;
significantly lesser than the overhead of the state of the art
Tor (up to 38 times over TCP).

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:
General—Security and protection; C.2.2 [Computer-
Communication Networks]: Network Protocols—
Applications; K.4.1 [Computers and Society]: Public
Policy Issues—Privacy
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NDN; information-centric networking; information theory;
security; privacy
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1. INTRODUCTION
The host-centric Internet, where a node uses domain name

systems to map the canonical name (e.g., www.google.com)
to the IP address, and identify the data source before get-
ting the required data, cannot scale for the traffic trends of
the future. These scalability concerns have resulted in the
proposal of a move to an information-centric Internet. The
corresponding information-centric networking paradigm is
based on the concept that a node interested in a content
just wants the network to provide the content, it does not
really care about where the content comes from; other than
perhaps the content’s provenance (validate creator). Invari-
ably, this paradigm requires a node interested in a content
to know the content’s name and request its chunks/packets
from the network using the corresponding name—the pack-
ets are routed in the network based on their name.

Named-data based networking has received significant in-
terest recently, resulting in the proposal of several informati-
on-centric network (ICN) architectures, such as Named Data
Networking (NDN) [12], NetInf [6], Publish-Subscribe In-
ternet Routing Paradigm (PSIRP) [1], PURSUIT [16], and
Data Oriented Networking (DONA) [13]. Each architecture
has it’s individual nuances, however all of them share three
important aspects: unique name for each data unit (packet
or chunk), routing based on data name, and in-network
name-based data caching. The names could be either hi-
erarchical and human-readable or machine-readable. These
inherent advantages of this paradigm make it a popular can-
didate for the future, more scalable, Internet.

The use of data names in ICN architectures to identify
content for routing and for data searches in the network
brings forth some challenges as well. One important chal-
lenge is that the explicit use of names to describe the content
makes it susceptible to censorship. Let’s use the popular
CCN/NDN architecture to illustrate this issue. In CCN,
the user sends out interest requests for the named content
chunks (e.g., www.google.com/movies/Arab-Spring.mpg.1) to
the network. The network’s built-in intelligence retrieves
the chunks, either from the content provider or an interme-
diate router caching them. This content retrieval requires
name based routing, that is, a request’s name will be pro-
cessed by each forwarding network node. This enables a for-
warding node to easily filter and drop requests that it wants
to censor. In fact, as opposed to censorship in today’s In-
ternet: implemented by blocking data based on destination
IP addresses or by time-intensive deep packet inspection at
proxies; in the ICN architecture, censorship becomes trivial,



as the content name is embedded as plaintext in the interest
packets. The filtering router can simply check the content
name in each packet for filtering purposes.

Monitoring and censorship of users’ traffic has been widely
used in the past by regimes and countries to prevent free
exchange of ideas (e.g., restricted social media access by
Iran/China, data monitoring by the NSA in the US). Such
acts of censorship are becoming more prevalent on the In-
ternet today, and would become easier to orchestrate on the
information-centric Internet. Mechanisms need to be pro-
posed to prevent such censorship acts. In this paper, moti-
vated by these observations, we propose a novel framework
to prevent censorship based on data names. Our framework
meets the requirements of strong security needed to prevent
inspection based censorship and also fast encoding to en-
sure that the user request rates are not adversely affected.
We select the CCN architecture for illustration on account
of its popularity and mature code-base. We use a 18 node
CCNx [14] testbed for our implementations and experiments.

The contributions of this paper are: (i) Design of a
lightweight anti-censorship framework for the users in an
ICN. Our framework leverages the computation efficient pre-
fix-free information encoding techniques (e.g., Huffman cod-
ing) and is widely applicable for mobile devices with their
low-computation capabilities. (ii) Discussion of the proto-
cols that utilize the framework to enable private communi-
cation between a user and a content provider in a way that
the communication cannot be censored by intermediate net-
work entities. (iii) Extensive evaluation of the framework’s
information-theoretic and computational secrecy. (iv) Im-
plementation of the framework in our CCNx testbed to vali-
date its low communication overheads compared to the state
of the art anti-censorship tools, such as Tor [19].

Section 2 presents the related work. In Section 3, we
present our models and assumptions. Our framework is
presented in Section 4, its information-theoretic secrecy is
proved in Section 5, and analysis of its breakability and
computational security is performed in Section 6. Section 7
presents the implementation and experimental results in de-
tails. Finally, we draw our conclusions and present our fu-
ture work in Section 8.

2. RELATED WORK
Research in both Future Internet Architecture (FIA) se-

curity and prefix-free coding are relevant to this paper. We
present relevant research in both areas starting with secu-
rity in FIAs. Arianfar et al. proposed a steganographic ap-
proach in [4] for the censorship problem. In this scheme, the
content provider generates a cover file and splits both the
content and the cover into smaller blocks. The provider cre-
ates chunks by mixing blocks of the content and the cover
and publishes the resulting chunks into the network. The
provider sends additional information to the user, such as
content hash and its length in blocks, the corresponding
cover blocks, and the name generation algorithm, through
a secure back channel. The use of the cover, which results
in a 100% overhead and the requirement of a secure back
channel for each content are the drawbacks of this scheme.

ANDaNA [7] uses two proxies, one adjacent to the re-
quester and another closer to the destination, to create a
two-layer encryption of the requests. Using ANDaNA a
user decouples its identity from its requests: the first-hop
proxy is only aware of the user identity but not what is re-
quested while the second proxy’s knowledge is limited to the

requested content only. Despite ANDaNA’s usefulness as an
anti-censorship tool, it incurs significant delays (ref. results
in [7]) in comparison to Tor (the Onion Routing protocol)—
the popular Internet anti-censorship tool. The delays are
due to the use of the CCN architecture and setting up of the
secure communication channels.

Tor is one of the most widely used and effective mecha-
nisms to ensure end-to-end data secrecy, maintain user pri-
vacy beyond the first hop, and prevent censorship by com-
pletely anonymizing the data using onion routing [19]. How-
ever, Tor also incurs significant latency and bandwidth over-
head on account of the shared symmetric key operations
(decryption) at each intermediate node. The bottom line is
that the state of the art approaches are expensive, requiring
several specialized nodes in the network (proxies and onion
routers); more importantly, they require multiple symmet-
ric/public key encryptions, which reduces application through-
put significantly. We take a different censorship evasion ap-
proach by proposing a prefix-free Huffman encoding frame-
work for chunk names; we prove the framework’s security
and demonstrate its practicality. Our framework has much
lower overhead than the state of the art and has very low
latency. Also the need of the secure back channel is minimal.

Encryption using Multiple Huffman Tables (MHTs) was
first proposed by Wu et al. [20]. In this approach, n dis-
tinct Huffman tables and a vector Q of size m, randomly
filled with integers in the range of (0, n− 1] are used. Each
source symbol is encoded by a Huffman table, selected from
the pool of n tables, based on the index of the symbol in Q.
The Huffman table selection iterates through the vector un-
til the source message is entirely encoded. Although MHT
was proved to be secure against cipher-text and the plain-
text attacks, the Chosen Plain-text Attack (CPA) broke the
scheme’s security [21]. Updating the vector Q for every m
look-ups, was shown to secure the MHT approach against
CPAs. An alternative solution was also proposed which re-
quired the insertion of a few random bits in the encoded
source sequence according to specific bit values [22].

In our scheme, we do not use MHT, instead each user has
one table for encoding. The table can be changed at a user-
defined rate if necessary. We prove that our framework pro-
vides higher information-theoretic security than using AES.
Our approach guarantees perfect information-theo-
retic secrecy so long as the size of the data name is no more
than a calculated threshold. We also discuss our scheme’s
defense against well-known cryptanalysis attacks.

3. MODELS AND CONVENTIONS
In this section, we present the system model, our assump-

tions, the attack model, and the convention for the genera-
tion of the key from the Huffman tree.

3.1 System Model
The network is composed of a set of users (U), routers (R),

providers (P), and a set of trusted proxies named anonymiz-
ers. A router is either a filtering router or a normal router. A
filtering router (rf ) filters the incoming requests’ data names
and drops requests whose names appear in a blacklist of con-
tents. The filtering process is on-line (happens on the fly),
and to reduce congestion and prevent throttling of the traffic
the filtering is generally performed very close to line speed
(packet arrival rate). Without loss of generality, we assume
that a user is directly connected to a filtering router, which
is in turn connected to the rest of the network.



Assuming that the Internet Protocol is not used as the
network layer, in ICN, the first hop node on the path of a
request is the only one that can identify the requester (from
MAC-layer header); further along the requester’s identity is
absent in the packet. This is the worst case scenario. If
IP-based addressing is used, we assume that the requester’s
IP address is cloaked using some anonymization technique.
With IP-cloaking the situation is the same as when IP ad-
dressing is not used. Our scheme also applies when the filter-
ing router and the user are separated by several hops. The
user requests a content by sending an interest packet (ter-
minology borrowed from the CCN/NDN architecture [12])
containing the name of the content chunk. The name of
an object is in a hierarchical format starting with the con-
tent provider’s name, e.g., www. youtube. com/ ArabSpring.
mpg. 1 (the postfix number ‘1’ is the chunk ID).

In our framework, instead of using the plaintext content
name for the interest, we use an encoded name. The en-
coded name can only be decoded correctly by a pre-selected
anonymizer which has the decoding table. No entity in the
path between the anonymizer and the requester has the de-
coding table and hence cannot decode the name. Between
the anonymizer and the data provider (source or an inter-
mediate router) the request is transmitted as a normal re-
quest and no filtering happens. We assume that between the
anonymizer and the requester the data is encrypted; other-
wise the filtering entity can identify the content. Generally,
a third-party entity, chosen by the user from a publicly avail-
able list, serves as the anonymizer. This is analogous to what
happens today: users evade traffic censorship by choosing an
anonymizing service, such as anonymizer.com [3], as a proxy,
and bypass the censors by tunneling their traffic (e.g., Face-
book, Youtube) through the anonymizer’s servers. A content
provider can also operate as the anonymizer.

We note that our design has a trade-off between user pri-
vacy and caching (network) efficiency. It has been shown
that to guarantee strong unlinkability of users’ identity with
their requests in-network caching should be avoided [2, 5].
In our framework, if a user does not trust the network, it
can request the content provider to be its anonymizer. This
would guarantee strong unlinkability in the network, how-
ever, the corresponding cached data at intermediate rou-
ters is unusable to serve new requests. This is true with Tor
and ANDaNA. The multi-layered onion-routing based en-
cryptions render the cached private data unusable for satis-
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Figure 1: Key Convention: On the left, Huffman
tree (i) is shown with the key 0101100110; On the
right, Huffman tree (ii) is presented with 1001011001
as the key. Although the structure of both trees are
the same, generated codewords are different due to
different keys.

fying repeat requests. On the other hand, if the user chooses
an anonymizer in the network, the cached data is only un-
usable by the routers in the path between the user and the
anonymizer. In-network caching can be leveraged in the rest
of the path. In this paper, we assume the content provider
is the same as the anonymizer.

3.2 Attack Model
We assume that the attacker (censoring authority) is ei-

ther an active or a passive eavesdropper. The attacker’s aim
is to learn how to correctly decode an interest. We also as-
sume that the attacker has bounded capabilities, i.e., it can-
not do large-scale brute force attacks. A passive eavesdrop-
per can capture all packet transmissions to perform analy-
sis. An active eavesdropper can capture and modify in-flight
requests and also masquerade as a legitimate user to send
interests.

3.3 Convention for Huffman Tree Key Gener-
ation

We consider an alphabet of size N for the source mes-
sages (chunk names). The source message is denoted by
Mk, where k is the message size. The encoded message is
denoted by Z and is assumed to be a binary string of size n.
In our framework three sources of randomness exist, namely
the random selections of the Huffman tree structure, the
conventional key, and the source alphabet order from their
respective universal sets. The user and the content provider
can secretly perform one or more of these three random se-
lections, thus making it difficult to break the system. The
Huffman tree is a full binary tree with source alphabet sym-
bols placed at the leaf nodes. Hence, for an alphabet of size
N there are N leaf and N − 1 internal nodes. However, for
the same set of symbols there can be several possible trees,
one of which can be chosen randomly. We will explain our
convention to generate a key for a Huffman tree in detail be-
low. The last source of randomness, is the random choice of
the alphabet order, that is, the order in which the alphabet
symbols are placed on the leaf nodes. Instead of the stan-
dard Huffman coding where the placement of the symbols is
based on the frequency of a symbol [11], the symbol place-
ment could follow a random distribution to further increase
the framework’s randomness.

In this paper, we leverage the first two methods, namely
the Huffman tree structure and the conventional key. We
assume that the order of the source symbols in the tree is
known to everyone. Exploiting the Huffman source coding,
we introduce a novel key generation mechanism from the
Huffman tree. We assume that the source (user) and the des-
tination (content provider) of a communication have secretly
shared a Probability Mass Function (pmf), which represents
the probability of the occurrence of the symbols of an alpha-
bet set in a message. The pmf is selected deliberately as a
part of the secrecy mechanism and does not reflect the true
source distribution. We also assume that both the source
and the destination have information to built the Huffman
tree with the same structure. The Huffman tree is generated
by assigning labels ‘0’ and ‘1’ to the left and the right branch
respectively, at each depth of the tree.

With a little analysis one can see that for a Huffman tree
with N − 1 internal nodes there are 2(N−1) mutation trees,
where a mutation tree of a Huffman tree is generated by
swapping the labels of the internal nodes. Each of these mu-
tation trees is associated with a unique string of size 2(N−1)

www.youtube.com/ArabSpring.mpg.1
www.youtube.com/ArabSpring.mpg.1


that is obtained by traversing the tree sequentially by levels
and at each level picking up the labels from left to right—
similar to breadth-first search. Assuming that we have an
arbitrary pmf for a six symbols alphabet, Figure 1 illus-
trates the corresponding Huffman tree. According to our
convention, the key for the tree (i) on the left hand side
is “0101100110” while the tree (ii) on the right hand side,
has the key “1001011001” despite having the same structure.
The source and the destination can frequently switch to a
new key from the pool of 2(N−1) keys, corresponding to the
2(N−1) mutation trees, to improve communication secrecy.

We note that this proposed convention is not restricted
to the Huffman source coding. In general, every prefix-free
source coding scheme with a full binary tree can use it.

4. ANTI-CENSORSHIP FRAMEWORK
Huffman coding is a promising approach to mitigate cen-

sorship in ICNs. In our framework, we encode a part of
the content name, the postfix after the domain name, using
the Huffman coding algorithm. The domain name is not en-
coded to allow for name based routing. We note that if the
anonymizer is not the provider then the domain name can
also be encoded. In this case, the anonymizer’s domain name
will be used as the prefix of the interest and used for routing.
Once the interest reaches the ingress router of the domain (a
CP or an anonymizer), the name in the interest is decoded
into the real name. Although we use the Huffman coding
technique to encode user interests other coding techniques
can also be used in our framework. Our framework con-
sists of three phases: initialization, secure content sharing,
and secure content response. The initialization phase is used
for sharing credentials between the user and an anonymizer
to enable censorship-proof communication. For simplicity
of exposition, we assume that the content provider is the
anonymizer.

4.1 Initialization phase
In this phase, the user sends a membership request to

the anonymizer (A) encrypted using the anonymizer’s pub-
lic key and signed using the user’s private key. On receiving
the membership request, A generates a random Huffman ta-
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Figure 2: A schematic diagram showing our frame-
work’s three phases: initialization, secure content
request, and secure content response.

ble, by using a random pmf for the interest, and sends the
membership reply secretly to the requester; it also stores
these information in its table (refer Figure 2). There are
two mechanisms that need to be addressed here: a) How
will the membership reply be sent secretly to user ui? and
b) How can A store each ui’s credentials to allow quick in-
dexing into the table to identify the corresponding Huffman
table? The anonymizer A generates a range of pseudonyms
(pli − phi ) for ui and creates a table entry consisting of the
generated Huffman table, the pseudonyms’ lower (pli) and
upper (phi ) limits, and the PKI details of ui. It then en-
crypts the Huffman table and the pseudonym limits using
the public key of ui (or a shared symmetric key) and signs
the message using its private key before sending the reply
to ui. At this point, the initialization phase is complete and
both ui and A have the required information for censorship-
proof communication. Steps 1 to 3 in Figure 2 illustrate this
phase. After the initialization phase, the user can request
privacy-sensitive content.

4.2 Secure content request
The user needs to generate an interest packet, where the

interest name has to be customized to evade censorship.
Essentially, the hierarchical content name is composed of
the anonymizer’s domain name in plaintext (to enable pre-
fix based routing), concatenated with the Huffman encoded
postfix of the name representing the exact chunk. The Huff-
man encoded portion of the name may vary depending on
the secrecy level required by the user. For the highest level
of secrecy, the complete name postfix after the anonymizer’s
domain name needs to be encoded. For lower levels of se-
crecy, the user can encode a portion of the postfix. For
instance, consider a content name for a Arab Spring video:
www.google.com/movies/2012/ArabSpring/HD/TahrirSquare.
The interest with highest secrecy level encodes all segments
except www.google.com/ (anonymizer’s domain name); while
the lowest level secrecy, only encodes the last segment, Tahr-
irSquare, the prefix is plaintext. This flexibility helps the user
to adjust its desired level of secrecy.

For fast indexing at A, ui chooses a random pseudonym
pi ∈ {pli, phi } and adds it as an identity field in the interest
packet/chunk. Anonymizer A uses an ordered binary tree
data structure, which has the ordered pseudonym ranges of
the users as leaves, to search for ui’s ID (u(i)) in its table.
Then, given pi, to identify ui A makes O(log |U|) compar-
isons, where U is the set of users. We will explore faster
search using collision-resistant hashed functions in the future
work. Users not interested in privacy requirements can be
allocated only one identifier or can use only one pseudonym
from their range. After the interest packet generation, the
user sends the interest for the content chunk. Step 4 of Fig-
ure 2 illustrates this.

4.3 Secure content response
When the interest packet arrives at a filtering node, the

filtering node can only infer partial information from the
received interest packet. The inference is only based on A’s
domain name, but is insufficient for filtering the interest to
identify the content. The filtering router can only perform
longest prefix matching of the interest name with entries
in its forwarding information base (FIB) and forward the
interest to the appropriate next hop. At A, a table look-up
on the pseudonym (Step 5 of Figure 2) in the interest packet
returns the desired Huffman tree for parsing the Huffman-



encoded content name. Then A decodes the postfix and
obtains the data from the content store(s). In the reply,
A uses the same interest name and the same pseudonym
while encrypting the content (symmetric/public key).

Our framework is also amenable to the other proposed
FIA named-data architectures. Note that naming of data in
all these architectures fall into one of two categories: hier-
archical, human readable naming and flat machine-readable
naming (hashed names). In both cases, the name in the
interest can be treated as a source message and encoded us-
ing the shared Huffman table. For instance, in NetInf, the
anonymizer can operate as a local or global name resolution
server (outside the filtering region) and do the transforma-
tion between the encoded and the real-name of the private
data. In DONA, the anonymizer can operate as a high-level
resource handler beyond the filtering routers. In PSIRP, a
subset of the nodes in the rendezvous system can be cho-
sen as the anonymizer(s). These nodes do the mapping be-
tween the encoded name and the real name of the data. The
anonymizers can send the forwarding identifier to the source
(provider) to send the data to the requester and ask the
provider to use the encoded name.

5. INFORMATION-THEORETIC SECURITY
ANALYSES

In this section, we investigate the information-theoretic
security of our framework and the protocols under different
assumptions on the eavesdropper’s knowledge of the system.
As mentioned in Section 3, we use the structure of the Huff-
man tree and the key as the sources of randomness. We omit
the third source of randomness: the ordering of the alphabet
in the Huffman tree. Hence, an attacker with the knowledge
of the tree structure and the shared key can reconstruct the
coding table, which breaks the system. However, as these in-
formation are encrypted using PKI or symmetric keys before
transmission, they are secure.

Thus there are three remaining information-theoretic at-
tack scenarios, which we will study: (i) the eavesdropper
has no parsing information, that is, tree structure and the
key are unknown; (ii) the eavesdropper has key information
only; and (iii) the eavesdropper has tree structure informa-
tion only. Throughout this section we use the term key and
the mutation tree alternatively where both refer to the key
in our framework obtained using the BFS-like traversal. We
also note that the source message is essentially the hierar-
chical data name postfix that needs to be encoded.

First, we derive basic entropy terms that we will need in
the rest of the section. As mentioned before, given a tree T
for alphabet size N , we have 2(N−1) mutually independent
mutation trees for T , that is, 2(N−1) keys for T . The selec-
tion of a mutation tree (i.e., key K ’s selection) uniformly at
random from the set of mutation trees results in K ’s entropy
to become:

H(K) = −
2N−1∑
i=1

p(i) log
(
p(i)

)
(1)

= − 1

2N−1

2N−1∑
i=1

log
(
p(i)

)
(2)

= log
(
2N−1) (3)

= N − 1. (4)

Besides the selection of a mutation tree of T , the random

choice of the tree structure (a uniform random distribution)
is also another source of randomness. The number of mutu-
ally independent full binary trees with N leaves is given by
the (N − 1)th Catalan number (CN−1) (refer Catalan Prob-
lem [8]). The N th Catalan number (CN ) with increasing N

is given by CN ≈ Ω( 4N

N3/2 ), thus CN−1 ≈ CN for large N .
Consequently, the entropy of using a random and secret tree
structure (TR) can be written as:

H(TR) = −
( 4N

N3/2
)∑

j=1

p(j) log
(
p(j)

)
(5)

= − 1
4N

N3/2

( 4N

N3/2
)∑

j=1

log
(
p(j)

)
(6)

≥ log
( 4N

N3/2

)
(7)

= log 22N − logN3/2 (8)

= 2N − 3/2 logN. (9)

Also, considering the source alphabet with N symbols
(e.g., N = 512 for Unicode or 256 for ASCII), which are
uniformly randomly distributed, the source symbol entropy
is given in Equation (12):

H(X) = −
N∑

k=1

p(xk) log(p(xk)) (10)

= − 1

N

N∑
k=1

log
(
p(xk)

)
(11)

= logN. (12)

Now we look at different eavesdropper attack scenarios.

5.1 Scenario 1: Both tree structure and the
key are unknown

In this scenario, the eavesdropper has no knowledge of
the tree structure or the key. Let Mk be the sequence of
k symbols to be encoded and Z be the encoded binary se-
quence with length n symbols. The evaluation of the mutual
information between the source message and the encoded se-
quence is provided by Equation (15) along with (4), (9), (12):

I(Mk;Z) = H(Mk)−H(Mk | Z) (13)

≤ max
(
kH(X)−

(
H(TR) + H(K)

)
, 0
)
(14)

= k log(N)− 3N + 3/2 log(N) + 1. (15)

Equation (13) is obtained from the definition of the mutual
information between the source message and its correspond-
ing encoded sequence. The r.h.s. of Equation (14) is ob-
tained from the fact that in this scenario the entropy of the
message, given its encoded sequence, equals the entropies
of the key and tree structure choices, and that the mutual
information is always non-negative. The outcome of Equa-
tion (15) is the conditional entropy of the source sequence,
given the encoded sequence, which is equal to the total ran-
domness for both the structure and the key.

5.2 Scenario 2: Tree structure known, but not
the key

In this scenario, the eavesdropper has complete knowledge
of the tree structure and consequently can build the Huffman



tree, and the key is the only secret. Hence, the mutual infor-
mation between the source message and its encoded binary
string is:

I(Mk;Z) = H(Mk)−H(Mk | Z) (16)

≤ max
(
kH(X)−H(K), 0

)
(17)

= max
(
k logN − (N − 1), 0

)
(18)

= k logN −N + 1. (19)

Equation (19) presents the entropy of the source message
assuming each symbol of this message is an i.i.d. random
variable. In practice, the dependency between the letters
in a word in the English alphabet reduces the entropy of
the upcoming symbol (letter) given the prior symbols. We
will discuss this in Subsection 5.4. Equating the r.h.s. of
Equation (19) to zero, we conclude that the amount of in-

formation leakage as k becomes greater than
(

N−1
logN

)
is pro-

portional to the value of k. Although the leakage increases
linearly with k, it must be investigated whether the eaves-
dropper can leverage this leakage or not. We will investigate
this in the next section.

5.3 Scenario 3: Key known, but not the tree
structure

Now we investigate the opposite scenario: the eavesdrop-
per knows the key, but does not have access to the tree
structure. This can happen when the eavesdropper inter-
cepts the key sharing communication phase between the
anonymizer and the user and somehow identifies the en-
crypted key. Equation (23) returns the entropy of the source
message under this condition:

I(Mk;Z) = H(Mk)−H(Mk | Z) (20)

≤ max
(
kH(X)−H(TR), 0

)
(21)

= max
(
k logN − (2N − 3/2 logN), 0

)
(22)

= (k + 3/2) logN − 2N. (23)

Equating the r.h.s. of Equation (23) to zero, we have the

threshold for the information leakage to be k =
(

2N
logN

− 3
2

)
,

which has the same growth rate as the previous scenario,
explained in Subsection 5.2.

Table 1 illustrates the thresholds of source message lengths
(in symbols) for perfect secrecy for the three scenarios, eval-
uated in Equations (15), (19), (23) respectively (i.i.d. sym-
bols in the messages). Note that messages longer than the
threshold lead to leakage; leakage is defined as the difference
between the message length and the length of the threshold.

Table 1: Maximum possible source message length
k (in symbols) for perfect secrecy in i.i.d. messages.

Scenario N =32 N =64 N =128 N =256 N =512
Scenario 1 17.5 30.3 53.2 94.3 169.1
Scenario 2 6.2 10.5 18.1 31.8 56.7
Scenario 3 11.3 19.8 35.07 62.5 112.2

5.4 Dependent source scenario’s information
leakage

So far, we have assumed that the source message is com-
posed of i.i.d. random variables. Although this assumption
is valid in most cases (for URL names), instances exist where

there is a dependency between the source message symbols.
For example, if the source message uses English words, then
this changes the distribution of the source symbols and they
no longer follow an i.i.d. uniform distribution. Hence, we
also investigate the amount of information leakage when the
symbols are dependent. Now, the probability of choosing a
symbol is conditioned on the previously selected symbols in
the same message, which decreases the source message’s rate
(i.e., the average entropy per symbol in the message).

According to Shannon [17], the N -gram (sequence of any
|N | adjacent symbols) entropy per symbol (Fn) is bounded
as

N∑
i=1

i log i(pai − pai+1) ≤ Fn ≤
N∑
i=1

pai log pai+1, (24)

in a way that given the previous a − 1 symbols, there is a
partial ordering of the symbols in the source alphabet corre-
sponding to their probability of appearing as the next sym-
bol. This can be discerned as a mapping between the sym-
bols and integers such that the most probable next symbol
(the ath symbol) conditioned on the a− 1 previous symbols,
maps to i = 1, the second probable symbol maps to i = 2,
and so on. Hence, pai represents the probability of the ith

most probable symbol (among N symbols) to be placed at
the ath position in the message, conditioned on the known
a − 1 previous symbols. Clearly, pa1 is the most probable
next symbol for the ath position in the message and paN is
the least probable symbol for the same position in the mes-
sage. Therefore,

paN ≤ pai ≤ pa1 , (25)

which can be inferred from [17]. The overall probability
of source symbols for the (a + 1)th position in the source
message is at least equal to the overall probability of source
symbols for the ath position, that is,

N∑
i=1

pai ≤
N∑
i=1

pa+1
i . (26)

In other words, the probability of guessing the correct source
symbols increases with the size of the source message. For
instance, for the word “the”, the probability of guessing “e”
after guessing “t” and “h” is higher than the probability of
guessing “h” after guessing “t.”

The general lower bound of the entropy of a source mes-
sage with k symbols is given as [17]

Γ =

k∑
j=1

N∑
i=1

i log i(pji − pji+1). (27)

However, calculating Γ is not easy because of the dependence
of a symbol on previous symbols. Consequently, for ease of
calculation we try to obtain a bound that approaches Γ from
below. To obtain this bound we first derive the following
equation:

k

N∑
i=1

i log i(pki − pki+1) ≤ Γ ≤ k

N∑
i=1

i log i(p1i − p1i+1). (28)

Equation (28) is obtained from the fact that Γ cannot be
smaller than the entropy calculated for the source message
by substituting the entropy of the last symbol (the last sym-
bol’s entropy, given the knowledge of the previous symbols
is very low) in place of every source symbol; Γ also can-



not be larger than the entropy calculated by substituting all
symbols with the first symbol in the source.

It is easy to see that in Scenario 1 (Subsection 5.1), the
lower bound entropy of the source message is at least as high
as the l.h.s. of (28). This is especially true as URL addresses
tend to also have symbols other than the English alpha-
bet and sometimes contain incomplete words or meaningless
strings, which would increase their randomness. Hence, we
use the l.h.s. of Equation (28) to approximate the entropy
of the source message, hence Equation (15) now becomes,

I(Mk;Z) ≤ k

N∑
i=1

i log i(pki − pki+1)

−(N − 1 + 2N − 3/2 logN) (29)

≤

(
kN2 logN

N∑
i=1

(pki − pki+1)

)
−(3N − 3/2 logN − 1). (30)

Equating the r.h.s. of inequality (30) to zero, Equation (31)
presents the condition for perfect secrecy,

k ≤ 3N − 3/2 logN − 1

N2 logN
N∑
i=1

(pki − pki+1)

. (31)

Similarly, the perfect secrecy threshold for Scenario 2 is:

k ≤ N − 1

N2 logN
N∑
i=1

(pki − pki+1)

(32)

and Scenario 3 is

k ≤ 2N − 3/2 logN

N2 logN
N∑
i=1

(pki − pki+1)

. (33)

We note that in the dependent source case, the bound for k
is dependent on the inter-symbols dependency, which is in-
trinsic to each message. Hence it is difficult to derive some-
thing similar to Table 1. However, in both set-ups (indepen-
dent/dependent sources) an important follow-up question
is, what happens when k is greater than the correspond-
ing bounds? Then the secrecy is no longer information-
theoretically perfect. Two choices exist at that point.

When k equals the bound the user and the anonymizer can
use another Huffman table to continue perfectly secure com-
munication. They can use a synchronized protocol where
before k reaches the bound the anonymizer can piggyback
a new encrypted Huffman table (a small overhead) with the
data. Or, in the interest of speed and low overhead, the user
can choose to keep using the current table and risk leaking
information. In this latter case, an eavesdropper can uti-
lize the information leakage to mount efficient brute-force or
cryptanalysis attacks to break the framework. In the next
section, we analyze the feasibility of such attacks.

6. COMPUTATIONAL SECRECY AND
BREAKABILITY ANALYSES

In this section, we investigate and analyze the security of
our framework from the perspective of well-known attacks.
As per proofs in the literature [9, 10], our framework is secure
against known plaintext attacks. Also, it is secure against
the chosen plaintext attack as the eavesdropper cannot get

the user/anonymizer to encrypt a chosen plaintext using the
corresponding Huffman table. In the chosen ciphertext at-
tack, the attacker needs to obtain the decryption of its se-
lected ciphertext. This is not possible in our framework as
the anonymizer is the only entity with decoding capability.
But, the anonymizer does not publish the decoded interest.
The use of independent Huffman tables for users, selected
uniformly at random, prevents the information leakage of
one user from affecting others. This uniform selection of
coding tables also prevents users to be able to correlate their
coding tables with those of others to decode their encoded
interests. Ciphertext-only attack can be mounted as the at-
tacker has access to a set of ciphertexts, (encoded interests).
If the user continues to use the same Huffman table, then
the repeated interests will have the same encoded names,
leaking information that the eavesdropper can use to make
the cipher-text attack more potent. This leakage can be pre-
vented by XOR-ing the postfix with a nonce and sending the
nonce appended with the encoded URL.

This leaves two attacks that can be orchestrated by an at-
tacker (active/passive): Correctly guessing the source mes-
sage from the encoded sequence, i.e., ciphertext-only attack,
or using brute-force to identify the correct key and the tree
structure.
Correctly guessing the source message: We use guess-
ing entropy [15], which is the expected number of guesses
required by an attacker to ascertain the correct source mes-
sage, to calculate the ease of guessing the source message.
Let G(Mk|Z) be the number of guesses required to iden-
tify Mk given Z, in a way that E[G(Mk|Z)], the expected
number of successive attempts, is minimized. Equation (34)
evaluates the corresponding E[G(Mk|Z)]:

E[G(Mk|Z)] =
∑
z∈Z

PZ(z)E[G(Mk|z)], (34)

where PZ(z) is the probability of selecting an encoded binary
sequence from the pool of all possible binary sequences. Us-
ing the results in [18], the guessing entropy is lower bounded
by the conditional entropy as

E[G(Mk|Z)] ≥ 2H(Mk|Z)−2 + 1. (35)

Now we evaluate the lower bound on the guessing entropy
in the three scenarios. Substituting Equation (15) in Equa-
tion (35), we have the lower bound guessing entropy for Sce-
nario 1 in Section 5 as:

E[G(Mk|Z)] ≥ 2

(
3N−3/2 log(N)−3

)
+ 1. (36)

Similarly, by substituting Equations (19) and (23) in Equa-

tion (35), we have E[G(Mk|Z)] ≥ 2

(
2N− 3

2
log(N)

)
−2 + 1 and

E[G(Mk|Z)] ≥ 2(N−1)−2 + 1 for Scenarios 2 and 3 respec-
tively.

Figure 3 illustrates the lower bound of the guessing en-
tropy under the three scenarios described above, with differ-
ent source alphabet size. As the conditional entropy of an
unknown structure is higher than that of an unknown key, it
is obvious that the attacker can extract the source message
with a fewer number of guesses in Scenario 3 compared to
Scenario 2.
Using a brute-force approach to identify the key
and the tree structure: As mentioned in Section 3, there
are 2(N−1) mutation trees for each distribution of the Huff-
man code. Considering an N symbols alphabet, there exists
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CN′ = (2N′!)
(N′+1)!×(N′!) different Huffman trees where N ′ =

N − 1. Each of these Huffman trees has 2(N−1) mutation
trees. For brute-force attack to identify the mutation tree,

an attacker needs to compute on average 2(N−1)

2
= 2(N−2)

different mutation trees–exponential in N . Given this, the

attacker has to use 2(N−1)!
N !×(N−1)!

× 2(N−2) different Huffman

coding tables on average to decode the encoded message
when attempting the brute force attack. Even with N = 256
(extended ASCII) it is computationally difficult to examine
this search space at a filtering router; even when it is per-
formed offline.

So far, we have proved the information-theoretic secrecy
and the computational security of our framework. In the
next section, we present our experimental results, which an-
swer the next question: how efficient, applicable, and
scalable is the framework for real-world mobile devices?

7. IMPLEMENTATION AND PERFORM-
ANCE ANALYSES

For our experimental evaluation, we have clients request-
ing content over the network to a CCN media server (con-
tent provider), which is also the anonymizer. Our testbed
consists of 18 nodes, eight desktops, six laptops, and four
smartphones (3 Nexus 4 and one Nexus 5). We have created
a 4-tiered line topology network connected using switches
and IPv4 routers. For the experiments our clients and the
anonymizer are placed on either ends of the line—requests
travel over five hops. The client, server, and the nodes in
the network employ the CCNx-0.7 [14] code base; our frame-
work is written in C and is integrated into CCNx. The nodes
route packets using longest prefix matching.

For fair comparison, we have disabled caching, so an in-
terest passes through all 4 tiers. We compare latency and
content retrieval time over four different scenarios, namely
the vanilla (Baseline) CCN implementation, CCN with our
anti-censorship framework (CCN+Huffman), data retrieval
using FTP, and using Tor, the state of the art Internet
anti-censorship tool. We also compare the overhead of our
framework and Tor over their respective baselines, Baseline
CCN and FTP, respectively. For testing Tor, we setup our
testbed as a Tor network where the first three network gate-
ways (from client towards the server) are provisioned as Tor
proxies—three onion layers of symmetric encryption for the
client. All our results were averaged over 100 runs. The size
of the contents in our experiments were chosen from the set
{1 MB, 10 MB, 100 MB, 500 MB}.

One option for encoding the data name (or the postfix
after the domain name) is to use a strong symmetric key al-
gorithm, such as AES. In Table 2, we compare the time taken
for encryption/decryption by two widely used AES versions
and for encoding/decoding using our framework. As an al-
ternative solution, the client can hash the content name with
a salt given by the anonymizer. The anonymizer needs to
pre-hash all the content names with each salt corresponding
to each client. Upon receiving an interest from a particular
client, the anonymizer does a look-up on the hashed content
name to find the requested content. Though the storage
requirement for these hashes grows infeasible with a large
number of clients and/or contents, we nonetheless evaluate
the performance of the Openssl SHA1 digest for the sake of
comparison.

We measured the timings on a wired laptop (AMD Tu-
rion, 2.4 GHz, dual core, 2.7 GB RAM) and on two wire-
less Nexus 5 smartphones (Krait 2.3 GHz, quad core, 2 GB
RAM). For the Huffman operations, indicated by “Huffman
coding” in Table 2, the time includes reading the source sym-
bol frequencies, building the tree, and encoding/decoding
the codewords. While the“Huffman∗”represents the elapsed
time only for the encoding/decoding operations. The rep-
resented time for AES accounts for the encryption and the
decryption operations only. The data name in our test con-
tained 75 characters.

The optimized OpenSSL AES version is almost four times
as fast as the aescrypt version; we note that this is the ver-
sion we use in our Tor experiments. Encoding/decoding
in our framework (Huffman∗) is three orders of magnitude
faster than OpenSSL (0.000034 vs. 0.010).

Table 2: Running time comparison between the AES
symmetric key cryptography and Huffman encoding.

Encoding Scheme Encoding (s) Decoding (s)
aescrypt in unix (laptop) 0.050 0.021
AES openssl (laptop) 0.010 0.008
Huffman coding (laptop) 0.004 0.004
AES openssl (Nexus 5) 0.041 0.023
Huffman coding (Nexus 5) 0.006 0.005
Huffman∗ (laptop) 0.000034 0.000027
SHA1 hashing (laptop) 0.000093

Figure 4 shows the download times on the laptop client for
different content sizes and compares Baseline CCN (denoted
as C ), CCN+Huffman (denoted as H ), FTP (denoted as F ),
and Tor (denoted as T ); the Y-axis is in log scale for clarity.
It is easy to understand that the download time increases for
all approaches with increase in content size. CCN performs
worse than FTP on account of the overheads of multiple
searches on each forwarding node: searching the cache (con-
tent store) and searching the pending interests table (PIT)
for the interest. This is true even if the data item is not
in the cache. Having said that, our framework on top of
CCN does not add any appreciable extra delay (less than 1.8
times). In comparison, Tor results in significant addi-
tional overhead in comparison to FTP, (between 2 and 38
times). Of course, the overhead for Tor is on account of the
multi-layer encryption. We have not compared our approach
to ANDaNA [7] as for content sizes 10 MB and greater Tor
performs better than ANDaNA; most of our tests are for
such larger contents. For completeness, in the future we will
compare our approach with ANDaNA. We will implement
the standard ANDaNA protocol on our testbed for compar-
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Figure 4: Average download time comparisons be-
tween Baseline CCN (C), Huffman (H), FTP (F),
and Tor (T).

ison.
Figure 5 presents the results of a detailed comparison of

the overhead ratio of our framework over the Baseline CCN
with that of Tor over FTP. An interesting observation is
that the error-bars for the overhead for Tor are much higher
compared to those of our framework. Given that our tests
were the only applications running in our testbed, it shows
that the multiple levels of encryptions in Tor results in er-
ratic behavior (Tor does not induce inter-packet delays for
anonymity), which is undesirable in terms of user experience.
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Figure 5: Protocol overhead comparison between
Huffman (H/C) and Tor (T/F).

This fact is also highlighted by the estimated round trip
time (RTT) results in Figure 6. We have not shown the
error-bars for the RTT because Tor’s RTT varies a lot and
undermines the graph’s readability. Baseline CCN and our
approach have almost the same RTT, with very small de-
viations, however Tor has significant deviations. Note that
the longer RTT values for the CCN and our approach in
comparison to FTP are due to the extra lookups.

Figures 7, 8, and 9 present averaged results for the smart-
phone clients (Nexus 5) connected over WiFi. For concise-
ness, we only present the CCN and our CCN+Huffman re-
sults. Figure 7 presents the download times for the smart-
phones. Due to the wireless connections, which suffer from
interference from other communications in the building, the
smartphone clients require proportionally larger download
times for all contents than the wired laptops.

Figure 8 presents the overhead of the Huffman framework
over Baseline CCN. Again the overheads are minimal and
with very low variance, which is excellent. Figure 9 presents
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Figure 6: Estimated average round trip time for C,
H, F, and T.

the comparison of the estimated RTTs between the Baseline
CCN and our framework for the smartphone client. The
RTT values are very consistent for all runs, with our frame-
work having a very small increase in RTT in comparison to
the baseline. The smartphone client results conform with
those of the laptop, the variance is a bit higher because of
the wireless medium and interference. The average RTT
stabilizes for large contents, hence the RTT values tend to
become lower. We believe that the smartphone Tor RTTs
will also have commensurate trends as the laptop results.

These results show that our framework is much more effi-
cient and scalable than Tor, the state of the art, as a mech-
anism to mitigate censorship of user communications.
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Figure 7: Download time comparison between Base-
line CCN (C) and Huffman (H) for the smartphone
clients.
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8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a lightweight anti-censorship

framework for ICN users, specifically for mobile users. We
proved conditions and thresholds for perfect secrecy as well
as analyzed the computational complexity of the framework.
The framework’s breakability study showed the advantages
of Huffman coding over AES, and the extensive experimen-
tal results demonstrated the efficiency of the framework in
comparison to other frameworks, such as Tor.

In the future, we plan to implement our framework in
other ICN architectures. We will analyze the trade-off be-
tween the users’ privacy and caching by using an interme-
diate anonymizer. We will also investigate the use of hash
functions based lookup at the anonymizer.
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